Kinematics C° Dynamics of Linkages Lecture G: Planetary Gears

Planetary Gear Trains

Planetary gearset: A planet gear orbits around a sun gear

Planetary Gear Trains

- A planetary set is a 2OLF system requiring 2 inputs (arm and sun)
- If either is held, the set is IDEF which is the conventional case

MEE341 - Lecture E: Planetary Gears
Sirde 3 off LDUU

Useful planetary configuration

- A more useful configuration is where a ring gear is added
- This will bring the gear output back to a grounded pivat $\left(\mathrm{D}_{2}\right)$

Planetary transmission

Gy 2010 Encyelopzodia Britannica, Ing

MEE341 - Lecture B: Planetary Gears

Levai's planetary gearsets configurations

Planetary gearsets equations

$$
\begin{aligned}
& \omega_{\text {gear }}=\omega_{\text {arm }}+\omega_{\text {gear/arm }} \\
& m_{v}=\frac{\omega_{\text {out }}}{\omega_{\text {in }}}= \pm \frac{d_{\text {in }}}{d_{\text {out }}}= \pm \frac{N_{\text {in }}}{N_{\text {out }}} \\
& \frac{\omega_{\text {gear } 1}}{\omega_{\text {gear } 2}}= \pm \frac{N_{\text {gear } 2}}{N_{\text {gear } 1}} \\
& \frac{\omega_{\text {gear } 1 / a r m}}{\omega_{\text {gear } 2 / a r m}}= \pm \frac{N_{\text {gear } 2}}{N_{\text {gear } 1}}
\end{aligned}
$$

Example 1

Find the absolute output angular velocity of the ring gear
Sun gear

$$
\begin{aligned}
& \mathrm{N}_{2}=40 \\
& \mathrm{~N}_{3}=20 \\
& \mathrm{~N}_{4}=80
\end{aligned}
$$

Planet gear
Ring gear

Input to arm
Input to sun
200 rpm cw
100 rpm cw

Example 1 Solution - Tabular method

Start by finding the missing values in the table below

Gear \#	$\boldsymbol{\omega}_{\text {gear }}=$	$\boldsymbol{\omega}_{\text {arm }} \boldsymbol{+}$	$\boldsymbol{\omega}_{\text {gear/arm }}$				
	Gear ratio						
2	-100	-200	a	$-40 / 20$			
3	d	-200	b	$+20 / 80$			
4	e	-200	c				

Example 1 Solution - Tabular method

Solving for a, b, c, d, and e we get:
$a=-100+200=100$
$\frac{b}{a}=-\frac{40}{20} \rightarrow b=-a \frac{40}{20}=-200$
$\frac{c}{b}=+\frac{20}{80} \rightarrow c=+b \frac{20}{80}=-50$
$d=-200-200=-400$
$e=-200-50=-250$

Gear \#	$\boldsymbol{\omega}_{\text {gear }}=$	$\boldsymbol{\omega}_{\text {arm }}+$	$\boldsymbol{\omega}_{\text {gear/arm }}$	
2	-100	-200	a	Gear ratio
3	d	-200	b	$-40 / 20$
4	e	-200	c	$+20 / 80$

Gear \#	$\omega_{\text {gear }}=$	$\omega_{\text {arm }}{ }^{+}$	$\boldsymbol{\omega}_{\text {gear/arm }}$	
2	-100	-200	+100	Gear ratio
2	-100	-200	$+100$	-40/20
3	-400	-200	-200	+20/80
4	-250	-200	-50	

The absolute output angular velocity of the ring gear is $\mathbf{2 5 0} \mathbf{~ w}$

Example I Solution - Formula method

Similar to compound gears but with relative velocities.
ω_{F} the angular velocity of the first gear
ω_{L} the angular velocity of the last gear
For the first gear $\omega_{F / a r m}=\omega_{F}-\omega_{\text {arm }}$
For the last gear $\omega_{L \text { Larm }}=\omega_{L}-\omega_{\text {arm }}$
$\frac{\omega_{\text {out }}}{\omega_{\text {in }}}=\frac{\omega_{\text {L/arm }}}{\omega_{F / \text { arm }}}=\frac{\omega_{L}-\omega_{\text {arm }}}{\omega_{F}-\omega_{\text {arm }}}= \pm \frac{\text { product of Number of teeth of driver gears }}{\text { product of Number of teeth of driven gears }}$
Both first and last gear must be pivoted to ground, and there must be a path of meshes connecting them.

Example 1 Solution - Formula methad

$\omega_{F}=\omega_{2}=-100$
$\omega_{L}=\omega_{4}$ to be found
For the first gear $\omega_{\text {F/arm }}=\omega_{F}-\omega_{\text {arm }}=-100-(-200)=100$
For the last gear $\omega_{\text {L/arm }}=\omega_{L}-\omega_{\text {arm }}=\omega_{4}-(-200)=\omega_{4}+200$
$\frac{\omega_{L / a r m}}{\omega_{F / a r m}}=\frac{\omega_{L}-\omega_{a r m}}{\omega_{F}-\omega_{a r m}}=\left(-\frac{N_{2}}{N_{3}}\right)\left(+\frac{N_{3}}{N_{4}}\right)=\left(-\frac{40}{20}\right)\left(+\frac{20}{80}\right)=-\frac{1}{2}$
$\frac{\omega_{L}-\omega_{\text {arm }}}{\omega_{F}-\omega_{\text {arm }}}=\frac{\omega_{4}+200}{100}=-\frac{1}{2} \quad \rightarrow \quad \omega_{4}=-250$
The absolute output angular velocity of the ring gear is $\mathbf{2 5 0} \mathbf{~ w}$

Example 2

$$
\begin{array}{ll}
N_{2}=30 & N_{3}=25 \quad N_{4}=45 \quad N_{5}=30 \quad N_{6}=160 \\
\omega_{6}=40 & \omega_{\text {arm }}=-50 \quad \text { Find } \omega_{2} \text { and } \omega_{3}
\end{array}
$$

Example 2 Solution

$\omega_{F}=\omega_{2}$ to be found
$\omega_{L}=\omega_{6}=40$
For the first gear $\omega_{F / \text { arm }}=\omega_{F}-\omega_{\text {arm }}=\omega_{2}-(-50)=\omega_{2}+50$
For the last gear $\omega_{L / a r m}=\omega_{L}-\omega_{\text {arm }}=40-(-50)=90$
$\frac{\omega_{\text {L/arm }}}{\omega_{\text {F/arm }}}=\frac{\omega_{L}-\omega_{\text {arm }}}{\omega_{F}-\omega_{\text {arm }}}=\left(-\frac{N_{2}}{N_{4}}\right)\left(-\frac{N_{3}}{N_{5}}\right)\left(\frac{N_{5}}{N_{6}}\right)=\left(-\frac{30}{45}\right)\left(-\frac{25}{30}\right)\left(\frac{30}{160}\right)=\frac{5}{48}$
$\frac{\omega_{L}-\omega_{\text {arm }}}{\omega_{F}-\omega_{\text {arm }}}=\frac{90}{\omega_{2}+50}=\frac{5}{48} \quad \rightarrow \quad \omega_{2}=814$
The absolute output angular velocity of the first gear is $\mathbf{8 1 4}$ cew

Example 2 Solutian

$\omega_{3}=\omega_{4}$ on the sameshaft
$\frac{\omega_{4}-\omega_{\text {arm }}}{\omega_{2}-\omega_{\text {arm }}}=\frac{\omega_{3}-\omega_{\text {arm }}}{\omega_{2}-\omega_{\text {arm }}}=-\frac{N_{2}}{N_{4}}=-\frac{30}{45}$

$\omega_{3}=-\frac{N_{2}}{N_{4}}\left(\omega_{2}-\omega_{\text {arm }}\right)+\omega_{\text {arm }}=-\frac{30}{45}(814+50)-50 \rightarrow \omega_{3}=-626$
The absolute output angular velocity of the first gear is 626 cw

SolidWorks Simulation

MEE341 - Lecture E: Planetary Gears

